RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels.
نویسندگان
چکیده
The way a dendrite is patterned determines how a neuron will receive information. The Rho GTPases have been reported to play increasingly well defined roles in determining dendritic branch and spine development and morphology. Much is known about how these small GTPases regulate the actin cytoskeleton; however, very little is known about how they alter the microtubule cytoskeleton. Our laboratory previously cloned and characterized cypin, a guanine deaminase that increases dendrite number by binding to tubulin heterodimers and promoting microtubule assembly. In the present study, we show that cypin and RhoA are part of a common pathway that regulates dendrite number. Inhibition of Rho kinase activity does not affect cypin-mediated dendrite branching. Furthermore, cypin does not affect the activity of RhoA, as measured by GTP binding to RhoA. In fact, activated RhoA acts to inhibit cypin protein expression and, by doing so, decreases dendrite number. In addition, this decrease in cypin protein occurs via a translation-dependent mechanism. Together, our data suggest that cypin acts downstream of the small GTPase RhoA to regulate dendrite branching in hippocampal neurons, providing a novel mechanism for RhoA action on microtubule dynamics.
منابع مشابه
STRUCTURAL CHARACTERIZATION AND TRANSCRIPTIONAL REGULATION OF THE CYTOSOLIC PSD-95 INTERACTING PROTEIN (CYPIN) AND ITS ROLE IN NEURONAL DENDRITE BRANCHING By
Dendrite morphology regulates how a postsynaptic neuron receives information from presynaptic neurons. The specific patterning of dendrite branches is promoted by extrinsic and intrinsic factors that trigger the activation of functional signaling pathways. However, only a handful of the regulatory factors and biochemical mechanisms involved in determining dendrite morphology are known. The Fire...
متن کاملA novel role for snapin in dendrite patterning: interaction with cypin.
Temporal and spatial assembly of signal transduction machinery determines dendrite branch patterning, a process crucial for proper synaptic transmission. Our laboratory previously cloned and characterized cypin, a protein that decreases PSD-95 family member localization and regulates dendrite number. Cypin contains zinc binding, collapsin response mediator protein (CRMP) homology, and PSD-95, D...
متن کاملBDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin.
Alterations in dendrite branching and morphology are present in many neurodegenerative diseases. These variations disrupt postsynaptic transmission and affect neuronal communication. Thus, it is important to understand the molecular mechanisms that regulate dendritogenesis and how they go awry during disease states. Previously, our laboratory showed that cypin, a mammalian guanine deaminase, in...
متن کاملActivity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95.
Dendritic morphology determines many aspects of neuronal function, including action potential propagation and information processing. However, the question remains as to how distinct neuronal dendrite branching patterns are established. Here, we report that postsynaptic density-95 (PSD-95), a protein involved in dendritic spine maturation and clustering of synaptic signaling proteins, plays a n...
متن کاملThe role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure.
Focal swelling or varicosity formation in dendrites and loss of dendritic spines are the earliest indications of glutamate-induced excitotoxicity. Although it is known that microtubule dynamics play a role in varicosity formation, very little is known about the proteins that directly impact microtubules during focal swelling and dendritic spine loss. Our laboratory has recently reported that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 31 شماره
صفحات -
تاریخ انتشار 2007